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Abstract
We study the general-setting quantum geometric phase acquired by a particle
in a vibrating cavity. Solving the two-level theory with the rotating-
wave approximation and the SU(2) method, we obtain analytic formulae that
give excellent descriptions of the geometric phase, energy and wavefunction
of the resonating system. In particular, we observe a sudden π -jump in the
geometric phase when the system is in resonance. Similar behaviour is found
in the geometric phase of a spin- 1

2 particle in a rotating magnetic field. Our
result suggests that the π -jump is a general feature for two-level systems, for
which we developed a geometrical model to help visualize its evolution.

PACS number: 03.65.Vf

1. Introduction

The dynamics of confined cavity fields interacting with the cavity wall is of great interest for
the understanding of a variety of problems such as hadron bag models [1], sonoluminescence
[2], cavity QED [3] and black hole radiation [4]. Most previous studies on dynamical cavities
concentrated on scalar or photon fields [5], which despite the apparent simplicity, exhibit rich
and complex dynamics. In contrast, the system of a Schrödinger particle in an oscillating
spherical cavity has not gained as much attention. In this paper, we study the generalized
quantum geometric phase of a particle in resonance with the vibrating cavity. We will show
that the geometric phase acquires sudden π -jumps when the particle makes transitions.

The geometric phase of a quantum system has drawn much attention since it was first
proposed by Berry in 1984 [6, 7]. It reveals the geometric structure of the Hilbert space of
the system [7, 8], and its existence in physical systems has been verified in many experiments
[9], including electron diffraction from a screw dislocation [10] and neutron interferometry
[11]. The phase effects in molecular physics can lead to energy splittings and shift quantum
numbers. The geometric phase has also been shown to be intimately connected to the physics
of fractional statistics, the quantized Hall effect, anomalies in gauge theory [7] and neutrino

0305-4470/03/4411321+12$30.00 © 2003 IOP Publishing Ltd Printed in the UK 11321

http://stacks.iop.org/ja/36/11321


11322 K W Yuen et al

oscillation [12]. As far as we know, our study represents the first calculation of the geometric
phase of a resonating system, which evolves non-adiabatically and non-cyclically.

2. Formalism

We consider an infinite cylindrical or spherical potential well with oscillating boundary [13]:

V (r) =
{

0 if r < R(t)

∞ if r � R(t)
(2.1)

where R(t) = R0/α(t), with α(t) ≡ [1 + ε sin(ωt)]−1. This particular oscillation of the cavity
has been chosen for simplicity. We will show below, especially in light of our rotating-wave
approximations (RWA) results, that the geometric phase depends not on the particular form of
the oscillation, but on whether it contains resonating terms. The coordinates can be transformed
to a fixed domain via �y ≡ α(t)�r , and, to preserve unitarity, the wavefunction is renormalized
through φ(�y, t) ≡ α−ξψ(�r, t), where ξ = 1 (3/2), for a cylindrical (spherical) well.

Since the full Hamiltonian H(t) commutes with L2 and �L, the wavefunction can be
factorized: φ(�y, t) = Y (y, t)�, where � depends only on the angular variables. Inside the
cavity, the radial wavefunction satisfies

∂Y

∂t
=

[
ih̄α2

2µ

(
∂2

∂y2
+

nd

y

∂

∂y
− md

y2

)
+

Ṙ

R

(
y

∂

∂y
+ ξ

)]
Y (2.2)

where µ is the particle mass, and nd = 1, 2 and md = m2, l(l + 1) for cylindrical and spherical
wells, respectively. In this paper, we only consider the md = 0 sector.

The wavefunction described by equation (2.2) evolves in time and acquires a time-
dependent phase, which in general consists of a dynamical phase and a geometric one [6].
When the dynamics is adiabatic and/or the evolution is cyclic, the geometric phase, or Berry’s
phase, has been studied for many systems [14, 15]. Since we are interested in the geometric
phase of a non-adiabatic, non-cyclic system, we have to resort to a generalized method.
Following [16], we first remove the dynamical phase from the wavefunction of the system:
φ(t) → φ̃(t) ≡ e−iθ(t)φ(t), the dynamical phase is

θ(t) ≡ −1

h̄

∫ t

0
E(t ′) dt ′ (2.3)

where E(t ′) = Re〈φ(t′)|H(t′)|φ(t′)〉. Note that the wavefunction φ(t) fulfils the Schrödinger
equation with the full Hamiltonian H(t).

The general-setting geometric phase, or the Pancharatnam phase β, is defined as the
relative phase between the state at time t1 and that at time t, both with the dynamical phase
removed. It can be obtained from the inner product of these two states

β(t1, t) ≡ −i log

[ 〈φ̃(t1)|φ̃(t)〉
|〈φ̃(t1)|φ̃(t)〉|

]
. (2.4)

Our main goal in this paper is to study this geometric phase for a simple but nontrivial
dynamical resonating system. If the particle is off resonance, the geometric phase acquired is
trivial.

3. Results

We have solved equation (2.2) numerically by the Crank–Nicholson method [17] and checked
that the solution is stable and converges very well. For example, the energy changes by
only about 0.05% when the time step δt of 0.001 is reduced by half. In figure 1, we show
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Figure 1. The maximum energy of the particle as a function of the driving frequency, obtained by
solving the Schrödinger equation numerically, for a cylindrical cavity with ε = 0.01 (solid line)
and a spherical cavity with ε = 0.02 (dashed line).
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Figure 2. The scaled energy, 
 ≡ (Eα−2 −Ek)/(En −Ek) where Ek and En are the unperturbed
eigenenergies, and geometric phase acquired at each cycle, β1/2Nπ , versus t/T , T being the
oscillation period of the geometric phase, obtained by the numerical method, for the case of
cylindrical cavity at ω̃ = 66.632, 17.278 and 22.212 27, using ε = 0.01. The numerical
results are shown together with both the RWA and SU(2) approximations, and they are virtually
indistinguishable.

the maximum energy of the particle as a function of the driving frequency ω, both having
been scaled to be dimensionless: Ẽmax ≡ µR2

0Emax/h̄
2, and ω̃ ≡ µR2

0ω/h̄. The particle
is initially in the unperturbed ground state, and it is in resonance at specific values of ω̃.
In each period of cavity vibration τ ≡ 2π/ω̃, the geometric phase acquires some changes,
β1(t1) ≡ β(t1, t1 +τ), and it exhibits oscillations at these resonances. We show three examples
in figure 2 for ω̃ = 66.632, 17.278 and 22.212 27, where the geometric phase acquires
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periodic changes of 2π, 4π and 6π , respectively. All the resonances shown in figure 1 are
associated with oscillations of β1 with amplitudes of 2Nπ , N = 1, 2, 3.

To understand the resonances and the associated geometric phases, we limit ourselves
to the parameter regime where the Hamiltonian can be truncated to a two-level system.
Specifically, if ε � 1, and the initial state is the kth unperturbed eigenstate |φk(y)〉, with
eigenenergy Ek , then when the driving frequency corresponds to the energy difference
between the initial state and another unperturbed eigenstate |φn(y)〉, with eigenenergy En,
i.e. ω = ωnk ≡ (En − Ek)/h̄, the particle is expected to behave as in a two-level system. The
full Hamiltonian H(t) under the two-level approximation is

∑
a,b=n,k

|φa〉〈φa|H(t)|φb〉〈φb| =
(

α2(t)Ek −ih̄ηnkṘ/R

ih̄ηnkṘ/R α2(t)En

)
(3.1)

where

ηnk ≡ 〈φn|
(

y
∂

∂y
+ ξ

)
|φk〉 (3.2)

is a constant that depends only on the states involved.
Then the problem simplifies considerably, and we have obtained its solution with two

analytic approaches: the SU(2) method and the rotating-wave approximation (RWA).
Following Cheng and Fung [18] we first expand the time-dependent Hamiltonian H(t) of

a two-level system in the identity operator I, the raising and lowering operators σ± and Pauli
spin matrix σ3

H(t) = i[f0(t)I + f1(t)σ+ + f2(t)σ3 + f3(t)σ−] (3.3)

where fj , j = 0, 1, 2, 3, are in general complex functions of time. In our case, comparing
equations (3.1) and (3.3) we have

f0(t) = −i(En + Ek)α
2(t)/2 (3.4)

f1(t) = −f3(t) = −h̄ηnkṘ/R (3.5)

f2(t) = −ih̄ωnkα
2(t)/2. (3.6)

The evolution operator can then be written as

U(t, 0) = b(t) e
∫ t

0 f0(t
′)dt ′

(
b−2(t) + g1(t)g3(t) g1(t)

g3(t) 1

)
(3.7)

where b(t) ≡ exp(−g2(t)), and gi satisfies

ġ1 = f1 + 2f2g1 − f3g
2
1 (3.8)

ġ2 = f2 − f3g1 (3.9)

ġ3 = f3b
−2 (3.10)

with the initial conditions gj (0) = 0 for j = 1, 2 or 3.
Suppose that the two levels in which the system oscillates are |φk(y)〉 and |φn(y)〉, so

that the wavefunction is |φ(y, t)〉 = ak(t)|φk(y)〉 + an(t)|φn(y)〉. Furthermore, if the initial
conditions are ak(0) = 1 and an(0) = 0, then(

ak(t)

an(t)

)
= b(t) e

∫ t

0 f0(t
′)dt ′

(
b−2 + g1g3

g3

)
. (3.11)
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Within the two-level approximation regime, the SU(2) method is exact and reduces the problem
to solving the ordinary differential equations for gj .

The spirit of the RWA is to retain only those terms in the Hamiltonian that correspond to
the resonance frequency. We first separate out the fast phase factors from the wavefunction:

|φ(y, t)〉 = ck(t) e−iρk(t)|φk(y)〉 + cn(t) e−iρn(t)|φn(y)〉 (3.12)

with ρi(t) ≡ Ei

∫ t

0 α2(t ′) dt ′/h̄. Substituting equation (3.12) in the Schrödinger equation with
the truncated Hamiltonian equation (3.3), we have(

ċk

ċn

)
= ηnk

(
0 −W ∗(t)

W(t) 0

)(
ck

cn

)
(3.13)

where

W(t) ≡ Ṙ(t)

R(t)
exp

[
iωnk

∫ t

0
α2(t ′) dt ′

]
. (3.14)

As ε is small, we can expand W(t) as a series of ε. Retaining all terms up to third order,
we have:

W(t) = ε eiωnkt

{
ω cos ωt + ε

[
iωnk(cos 2ωt + 1) − ω

2
sin 2ωt

]

+
ε2

4ω

[(
ω2 − 6ω2

nk

)
cos ωt − (

ω2 + 2ω2
nk

)
cos 3ωt

− i
7

2
ωnkω(sin ωt + sin 3ωt)

]}
. (3.15)

Note that W(t) consists of oscillatory terms with various frequencies depending on ω. In
the spirit of RWA, we keep only terms with the lowest frequency for each ω, the rationale being
that ck and cn vary slowly in time and contributions to W from high frequency terms cancel
on average over such a long time scale. It is clear then from equation (3.15) that W is largest
if ω = ωnk/N with N an integer, because of the emergence of zero frequency terms. For these
driving frequencies, W is large and effective in inducing transitions, and we have resonances.
At or close to a resonance, equation (3.15) simplifies tremendously, and closed-form solutions
for equation (3.13) can be obtained easily.

For example, when δω ≡ ω − ωnk ≈ 0, W(t) ≈ εω exp(−iδωt/2)/2, and we have Rabi
oscillations [19]:

ck(t) = eiδωt/2 [cos χt − iδω sin χt/(2χ)] (3.16)

cn(t) = � e−iδωt/2 sin χt/χ (3.17)

where we took ck(0) = 1, cn(0) = 0, χ ≡
√

�2 + δω2/4 and � = �1 ≡ ηnkεω/2. The
maximum value of |cn|2, |cn|2max(ω) = 1/[1 + (δω/2�)2], is a Lorentzian with a full width at
half maximum (FWHM) of 4�.

The solutions for higher N resonances differ only in the widths � = �N ≡ εNηnkγN/2N ,
where

γN =




(ωnk + δω) N = 1

(3ωnk − δω)/4 N = 2

17ω2
nk − 17ωnkδω + 2δω2

24(ωnk + δω)
N = 3

(3.18)
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Table 1. Scaled widths (�̃ ≡ µR2
0�/h̄εNηnk) of the lowest k = 1 resonances for a cylindrical

cavity with ε = 0.01. Full numerical results are compared to the RWA values. The widths
multiplied by the Rabi oscillation period, both extracted from the numerical data, are also shown
in the last column. Corresponding numbers for a spherical cavity with ε = 0.02 are shown in
parentheses.

Resonances �̃ T �/π

N n Numerical RWA Numerical

1 2 6.17 (7.45) 6.17 (7.40) 1.00 (1.01)
1 3 16.6 17.3 0.98
1 4 33.2 33.3 1.00
2 2 4.15 (4.66) 4.63 (5.55) 0.99 (0.96)
2 3 50.0 (76.5) 13.0 (14.8) 1.00 (1.02)
2 4 891 (532) 25.0 (27.8) 1.09 (1.17)
2 5 136 40.7 0.93
3 4 205 (341) 23.6 (26.2) 1.02 (1.07)
3 5 15 700 38.5 1.02
3 6 78 300 56.8 1.07

with δω ≡ Nω − ωnk . The FWHM of the resonances 4�/N ∝ εN are narrower for larger N,
and the oscillation periods T ∝ ε−N are longer.

The energy of the system is given in RWA by

E(t) ≈ α2(t)[Ek cos2 χt + (A + En) sin2 χt] (3.19)

where A ≡ [Ekδω
2 + 4En(�

2 − χ2)]/4χ2 . The energy of the particle therefore exhibits fast
but small oscillations due to the α2 factor, modulated by a large but slow oscillation of period
π/χ . It follows that

(1 − ε)2Emax − Ek

En − Ek

≈ 1

1 + (δω/2�)2
= |cn|2max(ω) (3.20)

which is again a universal Lorentzian for all resonances.
The RWA results are virtually identical with those of the SU(2) method. Figure 1 can

be understood completely in terms of overlapping series of the ωnk/N resonances, and the
positions of the peaks are in almost exact agreement with the RWA or SU(2) predictions. The
resonance line shapes are well fitted by the Lorentzian equation (3.20), though the widths
are underpredicted for the N = 2, 3 resonances, as shown in table 1. For example, the
(N = 2, n = 4) resonance has a much larger width than predicted by RWA and SU(2), which
is mainly due to the involvement of other states during transition, such as a (1 → 3 → 2)

process, which is second order in perturbation theory and so affects the N > 1 transitions more
severely. Occasionally, resonances at similar frequencies may overlap and lead to broadened
widths.

At a resonance, the Rabi oscillations of the particle as predicted in RWA (equation (3.19))
can be explicitly seen in figure 2, where the energy of the particle versus time, calculated
numerically, is shown for n = 4, 3, 4 and N = 1, 2, 3. The RWA also predicts that at exact
resonances, χ = �, and therefore the oscillation periods should be inversely proportional to
the widths of the resonances, T = π/χ = π/�. As shown in the last column of table 1, this
is clearly borne out in the numerical data, where T �/π is listed and is found to be close to 1
for all resonances, deviating by less than 10% for even those with strong mixing.
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Figure 3. β0 versus t/T at ω̃ = 12.344 for a cylindrical cavity with ε = 0.01. The region around
t/T = 0.5 is enlarged and shown in the lower panel to show the approximate π -jump. Numerical
results are shown here.

Using the RWA and two-level approximation, we can calculate the geometric phase easily.
Removing the dynamical phase with the help of equation (3.19), we have

|φ̃(t)〉 ≈ eiω′
nk

∫ t

0 sin2(χt ′)dt ′
(

ck(t)

cn(t) e−iωnkt

)
(3.21)

where ω′
nk ≡ A/h̄ + ωnk . For ω = ωnk/N resonances, if we choose t − t1 to be an integral

multiple, q, of the cavity oscillation period τ , we get

β(t1, t1 + qτ) = ω′
nk

2χ
[χ̃ − sin χ̃ cos(2χt1 + χ̃)] (3.22)

where χ̃ ≡ χqτ . In particular, if t1 = 0,

β0(qτ) ≡ β(0, qτ ) =
{

�(qτ)

2 for
(
2m − 1

2

)
< t/T <

(
2m + 1

2

)
�(qτ)

2 ± π for
(
2m + 1

2

)
< t/T �

(
2m + 3

2

) (3.23)

where �(t) = ωnkt − ωnk

2χ
sin 2χt , with m = 0, 1, 2, . . . . There are sudden approximate π -

jumps in β0 at t/T = (2m + 1/2), which are indeed seen in the numerical results shown in
figure 3, such as, for example, at ω̃ = 12.344. Since χτ � 1, the phase change in each cycle
(q = 1) is

β1(t1) ≡ β(t1, t1 + τ) ≈ ω′
nkτ sin2 χ(t1 + τ/2). (3.24)

At an exact Nth resonance, δω = 0 and A = 0, and so

β1(t1) ≈ 2Nπ sin2[χ(t1 + Nπ/ωnk)]. (3.25)

Therefore, the geometric phase oscillates with an amplitude of 2Nπ and period of T. Both of
these RWA predictions are in excellent agreement with the numerical data, as shown in
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figure 2. Note that the π -jumps and the functional forms of the geometric phases are
independent of ε and h̄, as long as they are nonzero. Also note that while the geometric
phase equation (2.4) is not defined when the overlap 〈φ̃(t1)|φ̃(t)〉 is zero, which happens, for
example, at t/T = 2m+ 1

2 in equation (3.23) and figure 3, precisely where the π -jumps occur,
it is well defined and calculable everywhere else, and therefore there is no problem identifying
and calculating the π -jumps.

In summary, even though all the results we presented in figures 1–3 are from numerical
computation, the SU(2) and RWA approximations are very good near most resonances (see
also table 1) and help us to understand these results. In particular, the analytic formulae derived
using RWA give excellent descriptions of the geometric phase, energy and wavefunction of
the resonating system.

4. A neutron in a magnetic field

To gain more insight into the geometric phase for a two-level system, we have studied a
simple model of a magnetic field rotating around a spin- 1

2 particle. Suppose a neutron with
gyromagnetic ratio γ is placed at the origin, in the presence of a magnetic field

B(t) = B0[sin α cos(ωt)î + sin α sin(ωt)ĵ + cos αk̂] (4.1)

which has a constant magnitude B0 but its direction sweeps out a cone with an opening angle
α, 0 < α < π , at a constant angular speed ω. The Hamiltonian of the system is given by

H(t) = −γ B · S = −h̄ω1

2

(
cos α e−iωt sin α

eiωt sin α − cos α

)
(4.2)

where ω1 ≡ γB0 and S is the spin matrix.
The system can be solved analytically [20]. The instantaneous eigenspinors of H(t) with

eigenenergies E+ = −E− = −h̄ω1/2, respectively, are

|ψ+(t)〉 =
(

cos(α/2)

eiωt sin(α/2)

)
(4.3)

and

|ψ−(t)〉 =
(

sin(α/2)

−eiωt cos(α/2)

)
. (4.4)

Suppose the neutron spin is initially parallel to B(0), and we consider the case when the
particle makes a transition to spin down along the instantaneous direction of B. This happens
with unit probability if ω = −ω1/cos α, provided that cos α �= 0. The state vector at any time
is then [20]

|ψ(t)〉 = e−iωt/2

{
cos

(
λt

2

)
|ψ+(t)〉 + i sin

(
λt

2

)
|ψ−(t)〉

}
(4.5)

where λ = ω sin α.

The Pancharatnam phases comparing the initial state with the state at time t for different
values of α are shown in figures 4–6. The sudden π -jump and a two-period oscillation can
be seen in the case when α = 1/p, p being an even integer, such as the case in figure 4.
When p is an odd integer, the Pancharatnam phase performs a single-period oscillation with
no π -jump, as shown in figure 5. It has neither single-period nor two-period oscillation when
other values of α are used, figure 6. If t = qτ , with q an integer and τ = 2π/ω,

β0(qτ) =
{

−�(qτ)

2 for
(
2m − 1

2

)
< qτ/T �

(
2m + 1

2

)
−�(qτ)

2 ± π for
(
2m + 1

2

)
< qτ/T �

(
2m + 3

2

) (4.6)
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Figure 4. Same as figure 3, but for a spin- 1
2 particle in a rotating magnetic field, α = 1/100, and

for t �= nτ .
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Figure 5. Same as figure 4, but for α = 1/101.
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Figure 6. Same as figure 4, but for α = 5/501.

which has the same form as equation (3.23), where m is an integer, T = 2π/λ, and

�(t) ≡
(ω1

λ
sin λt + ωt

)
. (4.7)

For the case t1 = (q − 1)τ and t = qτ ,

β1(t1) =
{

− 1
2 [�(t1 + τ) − �(t1)] for 0 < sin α < 1

2

− 1
2 [�(t1 + τ) − �(t1)] ± π for 1

2 < sin α < 1.
(4.8)

In the limit α � 1,

β1(t1) ≈ −2π sin2

(
λ

2
(t1 + τ/2)

)
, (4.9)

which has the same form as equation (3.25).
In the cyclic limit, i.e. t = qτ = T ≡ 2π/λ,

�(T ) = ωT = ωqτ = 2qπ (4.10)

and thus the geometric phases are β0(T ) = −(q − 1)π and β1(T ) = −π .
Since the geometric phases in the two models—a neutron in a rotating magnetic field and

a particle in a vibrating cavity—are remarkably similar, we conjecture that the main features
of the generalized geometric phase we calculated, especially the π -jumps, are universal for a
particle in transition from one state to another in two-level systems. Similar features about the
geometric phase have also been obtained in [21].

We can use a geometrical model based on Bloch’s sphere picture [22] to help visualize
the evolution of the geometric phase of a two-level system. It is clear from equation (4.5) that
the state vector traces out a path on the unit sphere defined by the angular coordinates θ ≡ λt
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and φ ≡ ωt . The excitation condition of our system therefore gives us the trajectory of the
state on this unit sphere,

θ = φ sin α (4.11)

which is a spiral curve. In our case, we have used a time-dependent basis |ψ+(t)〉, |ψ−(t)〉,
which mark the north and south poles, respectively. The solid angle subtended at the origin
by the spiral curve and the geodesic, φ = 0, up to any t = qτ is

�o =
∫ 2qπ

0

∫ φ′ sin α

0
sin θ ′dθ ′ dφ′ (4.12)

= 2qπ − sin (2qπ sin α)

sin α
(4.13)

which coincides with equation (4.7), in the limit α � 1. Therefore, we see from equations (4.6)
and (4.8) that the geometric phases β0 and β1 are simply the solid angles subtended by the spiral
curve, θ = αφ, from φ = 0 and φ = 2(q − 1)π up to φ = 2qπ , respectively, divided by −2.
This picture is a generalization of Berry’s [6] for adiabatic and cyclic evolution corresponding
to trajectories with constant θ = θ0, and the solid angle is simply �o = 2π(1 − cos θ0).

5. Summary

In summary, we have reported the first calculation of the quantum geometric phase of a
physical system in resonance, that of a particle in a vibrating cylindrical or spherical cavity,
and we have shown that it acquires sudden π -jumps when the particle makes transitions from
one state to another. We have derived analytic expressions in the RWA and SU(2) methods,
which give an excellent description of the energy, wavefunctions and the geometric phases
at these resonances. We found remarkably similar properties of the geometric phases for the
simple system of a neutron in a rotating magnetic field, which led us to conjecture that the
main features of the generalized geometric phases and especially the π -jump we found
are universal for two-level systems. We have also developed a geometrical model to help
visualize these phases.
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